

Unit 2: Cells

Bio 2- Human Biology

Cytology Objectives

You should be able to understand, identify, label, explain, etc:

- -A. Features/Organelles of a Eukaryotic- Animal Cell
- -B. Movement across the cell membrane (Cell Transport)
- -C. How cells get energy (Cellular Respiration)
- -D. How are proteins made (Protein Synthesis)
- -E. Advancements in medicine (Stem Cells)
- -F. How do we see them?! (Microscope)

Eukaryotic vs. Prokaryotic

Eukaryotic cell

10-100 μm

Eukaryotic vs. Prokaryotic

- All Eukaryotic-Animal Cells have:
 - Nucleus
 - Cytoplasm (cytosol)
 - Cell Membrane
 - •Lots of membrane-bound organelles

A. Cell Features: ORGANELLES- "little organs" within the cell that perform specific functions

The nucleus is to the cell what the _____is to a person.

The cell membrane is to a cell what the _____ is to a person.

TABLE 3.4Review of Major Organelles and TheirFunctions

ORGANELLE	FUNCTION
Nucleus	Contains almost all the genetic information and influences cellular structure and function
Rough endoplasmic reticulum (RER)	Studded with ribosomes (sites where the synthesis of proteins begins); produces membrane
Smooth endoplasmic reticulum (SER)	Detoxifies drugs; produces membrane
Golgi complex	Sorts, modifies, and packages products of RER
Lysosomes	Digest substances imported from outside the cell; destroy old or defective cell parts
Mitochondria	Provide cell with energy through the breakdown of glucose during cellular respiration

Table 3-4 Biology of Humans, 2/e© 2007 Pearson Prentice Hall, Inc.

Cell Nucleus

- Directs cell activities (the "brain" of the cell)
- Contains genetic information (DNA) in the form of chromatin
- Also contains a nucleolus makes ribosomes
- Surrounded by a nuclear envelope
- Has tiny pores where RNA can exit the nucleus

Chromosomes

Individual chromosomes are visible during cell division when they shorten and condense.

Figure 3-14a Biology of Humans 2/e

At all other times, the chromosomes are extended and not readily visible. In this dispersed state, the genetic material is called chromatin.

Figure 3-14b Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

Endoplasmic Reticulum

- Transport system; canals and channels that connect membrane to nucleus and to organelles within the cell
- Smooth ER (lipid synthesis and detoxification)
 Rough ER (contains ribosomes for protein manufacture)

Figure 3-15 Biology of Humans, 2/e

Randy Moore, Dennis Clark, and Darrell Vodopich, Botany Visual Resource Library @ 1998 The McGraw-Hill Companies, Inc. All rights reserved.

Three-Dimensional Endoplasmic Reticulum

Ribosomes -

Rough endoplasmic reticulum

Nuclear envelope

Nucleus

Smooth endoplasmic reticulum

Golgi Apparatus

- Flattened membranes; function to package and deliver proteins produced by the ribosomes
- Proteins are exported in vesicles

Figure 3-16 Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

Lysosomes contain enzymes that breakdown macromolecules, diseased cells, and invaders

Figure 3-17 Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

Mitochondria

 Chemical energy from food is converted to a useable form (ATP) • process is called Cellular Respiration

The "powerhouse" of the cell

Other Organelles

- Centrosome forms a spindle during cell division
- Vesicles packaged substances, exported
- Microfilaments and Microtubules cell skeleton (cytoskeleton), maintains shape and functions in

movement

- Vacuoles
- Microvilli
- Cilia & Flagella
- Ribosomes

The Whole Cell

Label This One

Quick: Name the structure

One more!:

Name the structure

What is its function?

Cell Membrane

Lipid bilayer (phospholipids) make up the membrane with proteins embedded to help regulate what comes across the membrane.

What sorts of things cross the cell membrane?

<u>Cell Membrane</u>

This lipid bilayer separates the **extracellular fluid** from the material inside the cell contained in the **cytoplasm.**

Proteins, cholesterol, and carbohydrates are also part of the membrane giving it the qualities of a **fluid mosaic.**

Cell Membrane Structure

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Copyright C McGraw-Hill Education. Permission required for reproduction or display.

Figure 3-5 Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

Hydrophobic and Hydrophilic

B. Cell Transport-Movement across the cell membrane

<u>Mechanism</u>	Description
Simple diffusion	Random movement from region of higher to lower concentration
Facilitated diffusion	Movement from region of higher to lower concentration with the aid of a carrier or channel protein
Osmosis	Movement of water from region of higher water concentration (lower solute concentration) to lower water concentration (higher solute concentration)
Active transport	Movement often from region of lower to higher concentration with the aid of a carrier protein and energy usually from ATP
Endocytosis	Materials are engulfed by plasma membrane and drawn into cell in a vesicle
Exocytosis	Membrane-bound vesicle from inside the cell fuses with the plasma membrane and spills contents outside of cell

Movement Through Cell Membrane Passive Transport *(no energy required)* • Simple Diffusion - molecules tend to spread out • Facilitated Diffusion

Passive Transport

A lipid-soluble substance moves through the lipid bilayer from high to low concentration.

-Diffusion -Facilitated Diffusion -Osmosis

Substances move from High to low concentration

Figure 3-7 Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

OSMOSIS

Osmosis is the movement of water across a membrane -Net movement in the direction of higher solute concentration

HypertonicHypotonicIsotonic

Isotonic medium

Hypertonic medium

Hypotonic medium

Figure 3-9 Biology of Humans, 2/e

Osmosis Animation

Example: Which beaker(S) contains a solution that is hypertonic relative to the bag

What will happen to the baggie in the hypertonic solutions?

OSMOSIS

Diffusion of molecules from a place of higher concentration to a place of lower concentration until the concentration on both sides is equal

ICANHASCHEEZBURGER.COM BY 🔿 🕏 🗇

• Active Transport (using energy)

- Exocytosis
- Endocytosis (phagocytosis & pinocytosis)

To facilitate the movement of large particles into the cell, the membrane encloses the substance in a vesicle, a process called endocytosis

Exocytosis is the process whereby large molecules leave the cell

Phagocytosis ("cell eating") occurs when cells engulf bacteria or other large particles.

Figure 3-11a Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

Figure 3-12 Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

C. Cellular Respiration

Mitochondria

Generate most of a cell's energy in the form of ATP.

The main site of cellular respiration.

Has both an inner and outer membrane.

TABLE 3.5 REVIEW OF CELLULAR RESPIRATION

PHASE	LOCATION	DESCRIPTION	MAIN PRODUCTS
Glycolysis	Cytoplasm	Several-step process by which glucose is split into 2 pyruvate	2 pyruvate 2 ATP 2 NADH
Transition reaction	Mitochondria	One CO ₂ is removed from each pyruvate; the resulting molecules bind to CoA, forming 2 acetyl CoA	2 acetyl CoA 2 NADH
Citric acid cycle	Mitochondria	Cyclic series of eight chemical reactions by which acetyl CoA is broken down	2 ATP 2 FADH ₂ 6 NADH
Electron transport chain	Mitochondria	Electrons from NADH and FADH ₂ are passed from one protein to the next, releasing energy for ATP synthesis	32 ATP H ₂ O

Table 3-5 Biology of Humans, 2/e© 2007 Pearson Prentice Hall, Inc.

Cellular Respiration Video

(a) A mitochondrion showing the double membrane that creates two compartments

(b) Electron micrograph of a mitochondrion

Figure 3-19 Biology of Humans, 2/e © 2007 Pearson Prentice Hall, Inc.

Cellular Respiration

Cellular Respiration requires oxygen to breakdown glucose in a three step process.

 Glycolysis occurs in the cytoplasm splitting glucose into two pyruvate molecules generating a net gain of two ATP and two NADH molecules.

36 AT

2. Acetyl CoA enters the citric acid cycle (**Kreb's Cycle**) releasing two ATP, two FADH2, and six NADH molecules

36 ATP

The Electron Transport Chain is the final step where the electrons of FADH2 and NADH are transferred from one protein to another, until they reach oxygen, releasing energy that results in 32 ATP.

36 ATP

Fermentation

Fermentation is the breakdown of glucose *without* oxygen and takes place entirely in the cytoplasm. It is very inefficient resulting in only two ATP

Lactic acid fermentation takes place in the muscles

Cellular Respiration Explanation!

BOZEMANSCIENCE

Microscope Paris

Magnification

Your microscope has 3 magnifications: **Scanning**, Low and **High**. Each objective will have the number of the magnification as a whole number (not decimals). In addition to this, the ocular lens (eyepiece) has a magnification.

The total magnification is the: (eyepiece)ocular lens x objective lens

	Magnification	Ocular lens	Total Magnification
Scanning	4x	10x	40x
Low Power	10x	10x	100x
High Power	40x	10x	400x

To focus on a specimen:

1. Scanning --> use the coarse knob and then the fine knob

2. Low power --> use coarse knob and then the fine knob

3. High power --> use fine knob only!!!!

